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ABSTRACT: New nanocomposites have been prepared by
combining tin selenide (SnSe) with graphene oxide (GO) in a
simple aqueous solution process followed by ice templating
(freeze casting). The resulting integration of SnSe within the
GO matrix leads to modifications of electrical transport
properties and the possibility of influencing the power factor
(S2σ). Moreover, these transport properties can then be
further improved (S, σ increased) by functionalization of the
GO surface to form modified nanocomposites (SnSe/GOmod)
with enhanced power factors in comparison to unmodified
nanocomposites (SnSe/GO) and “bare” SnSe itself. Function-
alizing the GO by reaction with octadecyltrimethoxysilane
(C21H46O3Si) and triethylamine ((CH3CH2)3N) switches SnSe from p-type to n-type conductivity with an appreciable Seebeck
coefficient and high electrical conductivity (1257 S·m−1 at 539 K), yielding a 20-fold increase in the power factor compared to
SnSe itself, prepared by the same route. These findings present new possibilities to design inexpensive and porous
nanocomposites based on metal chalcogenides and functionalized carbon-derived matrices.

1. INTRODUCTION

Sustainable means of energy storage and conversion are vital
globally, given the economic, security, and environmental
concerns associated with fossil fuels. There is an urgent need to
consume less power and improve energy efficiency. Thermo-
electric materials have been studied for many years and offer a
very convenient method of converting waste heat into useful
power. However, the efficiency of this process is too low to be
cost-effective.1,2

The conversion efficiency of thermoelectric materials is
determined by the figure of merit,3 ZT = S2σT/κ, where σ is
the electrical conductivity, S is the Seebeck coefficient, T is the
temperature, and κ is the thermal conductivity. To maximize
the ZT value, a high Seebeck coefficient is required, coupled
with small thermal conductivity and high electrical con-
ductivity. Nanostructuring can very effectively enhance ZT,
where most notably the high density of interfaces can improve
phonon scattering, decreasing the lattice thermal conductivity.
Tin selenide (SnSe) is a narrow band gap, binary IV−VI

semiconductor, suitable for various optoelectronic applications
like memory switching devices, photovoltaics, and light
emitting devices. It has also emerged as a highly promising

thermoelectric material over the last 4 years.4 SnSe is
characterized by excellent energy conversion efficiency, low
cost, and high earth abundance of the component
elements.5−10 Most current research has been concentrated
mainly on p-type SnSe11−15 and conversely n-type SnSe16−18 is
more difficult to achieve. The high efficiency of SnSe as a
thermoelectric material is determined to a great extent by the
method of its production. To synthesize SnSe with appreciable
ZT values, the use of toxic chemicals, high annealing
temperatures, and long processing times is required.
Alternative solution-based syntheses can be used to produce
nanostructured SnSe in bulk quantities under much milder and
simpler conditions, but use of surfactants to control growth
and morphology can lead to relatively meagre thermoelectric
properties.19

Recently, graphene-based materials have been explored for
their potential as thermoelectrics.20,21 With appropriate
nanostructuring and band gap engineering, studies have
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demonstrated that both the lattice thermal conductivity of
carbon derivatives can be reduced and the Seebeck coefficient
can be enhanced without dramatically decreasing electrical
conductivity.22 Various graphene nanostructures have thus
been predicted to possess ZT values sufficient to make them
attractive for energy conversion.22 Similarly, the chemical
modification of the graphene or graphene oxide (GO) surface
provides alternative routes to engineer the mechanical,
electrical, and thermal properties. For instance, experiments
show that aromatic molecules tethered to graphene layers can
increase the power factor by a factor of 8 compared to that of
an unmodified graphene film.23 Carbon is light, abundant,
relatively cheap, and easily recyclable and so it presents a
number of other attractions in terms of a potential thermo-
electric.24 However, neither pure graphene nor GO have yet
demonstrated a superior thermoelectric performance exper-
imentally.
The best examples of SnSe thermoelectric performance arise

in large, dense single crystals, whereas bulk powders
(especially, some of those synthesized under mild conditions)
can often exhibit relatively mediocre ZT values compared to
such crystals. Emerging studies over the last 5 years have begun
to demonstrate that graphene and its derivatives can be used
effectively as a component in composite materials, where either
graphene is added in small concentrations to influence the
grain boundaries or is employed to “wrap” nanoparticles of the
active thermoelectric material. Examples in Bi2Te3, PbTe, and
skutterudite systems demonstrate that charge carrier concen-
trations can be increased, the nature of the charge carriers
altered (as manifested in a change of the sign of Seebeck
coefficients), and thermal properties improved by increased
phonon scattering at defects and grain boundaries.25−27 Given
the need to improve the thermoelectric properties of bulk SnSe
and given the chemical flexibility associated with functionaliz-
ing carbons, an interesting alternative approach could thus be
to engineer nanoscale composites comprising the selenide and
modified GO. Although there are some reports of the
application of types of SnSe/GO-based composite materials
in photodetectors,28,29 photocatalytic devices,30 and sodium-
ion batteries,31 to the best of our knowledge, there are no
existing reports of SnSe/GO-hierarchical nanocomposite
materials or of using SnSe/GO composites for thermoelectric
applications.
In this work, we demonstrate how it is possible to make

SnSe nanocomposites with GO as a “host” matrix. The
materials can be produced in bulk quantities and potentially
cast into bespoke, well-defined, shaped, and sized monoliths.
Additionally, we show that chemically modifying (functionalis-
ing) the surface structure of the GO component is an effective
way to manipulate the thermoelectric properties of the SnSe/
GO nanocomposites. The rationale behind the functionalza-
tion of the GO component was first to modify the surface
chemically with amine groups in aqueous media to produce
hydroxyl groups, which act as electron donors and second to
expand the interlayer distance between GO layers (using
octadecyltriethoxysilane), thus preventing agglomeration and
creating local structural disorder at the GO surface.
Subsequent experiments show that both the electrical
conductivity and Seebeck coefficient of the nanocomposites
are influenced by functionalization. This approach suggests a
new direction for modifying the thermoelectric performance of
chalcogenides and lays the foundations for the design of other
kinds of GO-based thermoelectric composites.

2. EXPERIMENTAL SECTION

2.1. Synthesis of GO. GO nanosheets were prepared by
the improved Hummers’ method.32,33 In detail, a 9:1 mixture
of concentrated of H2SO4/H3PO4 (360:40 mL; analytical
reagent grade, Fisher and 85% aq, Alfa-Aesar, respectively) was
added to a mixture of graphene flakes (3.0 g; graphene
nanoplatelet aggregates, Alfa-Aesar) and KMnO4 (18.0 g; ACS
reagent >99.0%, Sigma-Aldrich), in a mildly exothermic
process at 40 °C. The mixture was subsequently heated to
50 °C and stirred for 16 h before cooling with ice and water
(400 mL). Once cooled, 30% of H2O2 (7 mL; 30%, VWR) was
added slowly to the reaction mixture, which was subsequently
stirred for 5−6 h until the mixture color changed from light
yellow to brown. The product was washed with deionized (DI)
water to remove any oxidant residues entirely. The resulting
solution was poured into 40 mL centrifuge tubes and
centrifuged for 1 h at 4000 rpm before separating the oxidant
residues to yield a brown solid. The process was repeated more
than 10 times until the product was thoroughly washed. For
the preparation of GO dispersions, the solid products were
redispersed in DI and sonicated for 1 h at 200 W. The
dispersions were purified by centrifugation for 20 min, and the
upper half of their volume was selected for further studies.

2.2. Synthesis of SnSe Nanoparticles. SnSe nano-
particles were synthesized via a citric acid-assisted solution
synthesis,19 which includes three steps: first, 285 mmol citric
acid (99.5%, Alfa-Aesar) and 10 mmol SnCl2·2H2O (99.99%,
Sigma-Aldrich) were dissolved in 50 mL of DI in a two neck
round-bottom flask, so as to prepare a transparent solution
containing Sn2+ ions. Separately, 10 mmol Se (>99.5%, Sigma-
Aldrich) and 23 mmol NaBH4 (98%, Alfa-Aesar) were
dissolved in 50 mL of DI in a single-neck round-bottom
flask to prepare sodium hydrogen selenide (sodium biselenide;
NaHSe). In the final stage, NaHSe was injected into the
solution of Sn2+ ions, which leads to the direct formation of a
black precipitate of SnSe. The mixture was held at room
temperature under Ar (99.998%, BOC) on a Schlenk line. The
product was washed with DI and ethanol several times. The as-
synthesized samples used for characterization and performance
evaluation were stored in an Ar-filled MBraun glovebox (<0.5
ppm H2O, <0.5 ppm O2) to avoid possible reaction with air or
water.

2.3. Chemical Modification of GO. As-synthesized GO
was silylated following a procedure similar to that reported for
the silylation of a layered silicate.34−37 First, GO (160 mg) was
mixed with toluene (20 mL; 99%, Alfa-Aesar), and the mixture
was sonicated for 1 h under a nitrogen atmosphere to form a
homogeneous solution. Octadecyltrimethoxysilane (2 mL)
(ODTS; C21H46O3Si; 98% Alfa-Aesar) was added slowly to
the GO solution. Triethylamine (2 mL) (TEA; (CH3CH2)3N;
99.5%, Sigma-Aldrich) was injected into the reaction mixture,
which was allowed to stand for 12 h. After 12 h at 50 °C, the
product was washed and centrifuged with ethanol several
times.

2.4. Ice-Templating Synthesis of SnSe/GO Nano-
composites. A modified ice-templating method was utilized
to prepare SnSe/GO and SnSe/GOmod nanocomposites.34,38

First, an aqueous solution of SnSe (2.2 g in 100 mL H2O) was
mixed with an aqueous dispersion of GO (200 mg in 30 mL
H2O) in 100 mL of distilled water and the mixture was
sonicated for 1 h. The sonicated dispersion (100 mL) of
nanoparticles was dropped slowly into a Dewar of liquid
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nitrogen (600 mL) using a syringe equipped with a needle.
Freezing lasted for 30 min until the suspension was completely
frozen and brown, sponge-like, misshapen beads of SnSe/GO
(with a size of ca. 1.5 mm × 1.5 mm × 2 mm; Scheme 1) were

formed. The SnSe/GO spheres were freeze-dried (Schlenk line
at ca. 3 × 10−1 mbar and −196 °C to ambient temperature)
and dried further under vacuum overnight (16 h). The SnSe/
GOmod nanocomposite was prepared following the same
procedure described above for SnSe/GO and by way of
example, the overall synthesis procedure for the SnSe/GOmod
nanocomposite is shown in Scheme 1 (and in more detail in
Scheme S1 in the Supporting Information). The modified and
unmodified nanocomposites used for characterization and
property measurements were stored in an Ar-filled MBraun
glovebox (<0.5 ppm H2O, <0.5 ppm O2) to avoid any possible
reaction with air or water.
2.5. Materials Characterization. Powder X-ray diffraction

(XRD) patterns were recorded using a PANalytical X’pert Pro
MPD diffractometer in Bragg−Brentano geometry (Cu Kα1
radiation, λ = 1.5406 Å). Diffraction data were typically
collected in the angular range of 2θ = 5°−60° for up to 12 h.
Fourier transform infra-red (FTIR) spectroscopy was
performed with a Jasco 4100 FTIR spectrometer operating
in the 400−4000 cm−1 spectral range to obtain FTIR spectra at
room temperature. Raman spectroscopy was conducted using a
LabRAM HR system (Horiba Jobin Yvon) with a Ventus 532
laser system operating at 100 mW and 532 nm.
The morphological and structural characteristics of the

synthesized products were investigated by scanning electron
microscopy (SEM) using a Carl Zeiss Sigma microscope
equipped with an energy-dispersive X-ray spectrometer
(Oxford Instruments X-Max 80), with accelerating voltages
of 5 and 20 kV for imaging and energy-dispersive X-ray
spectroscopy (EDS), respectively. The obtained nanocompo-
sites were dispersed on a conductive carbon tape attached to a
standard aluminium SEM sample stub.
The microstructure and crystallography were further

investigated by high-resolution transmission electron micros-
copy (HRTEM) and selected area electron diffraction (SAED)
using a JEOL 2011 microscope operated at 200 kV. TEM
samples were prepared by mixing/grinding either SnSe or

nanocomposite (SnSe/GO) powders with acetone in an agate
mortar. Three to six drops of the resulting suspension were
dropped onto a 3 mm diameter holey C-coated Cu TEM grid.

2.6. Measurement of the Electrical and Thermal
Transport Properties of SnSe/GO Nanocomposites. To
measure the performance of the nanocomposites, the samples
were loaded into a graphite die and hot-pressed into pellets at
500 °C for 20 min under Ar protection with a uniaxial pressure
of ≈60 MPa. XRD data (see Supporting Information) and
EDS spectra revealed no significant changes to the
composition of the samples following hot pressing. The
obtained pellets were cut into bars of dimensions 12 mm × 3
mm × 2 mm, and the Seebeck coefficient and electrical
conductivity of the samples were measured perpendicular to
the hot pressing direction using a Linseis LSR-3 instrument
under a helium atmosphere over a temperature range of 290−
540 K. The uncertainty in the measurement of the Seebeck
coefficient and electrical conductivity is 5%. Electrical
measurements were also performed on samples of SnSe itself
(i.e., without addition of GO or modified GO), prepared by a
similar process, for the purposes of comparison.
The total thermal conductivity was calculated through κtot =

DCpρ, where D (the thermal diffusivity) was measured using a
Linseis LFA 1000 instrument under vacuum conditions, over a
temperature range of 290−540 K, Cp (the specific heat) was
obtained via DSC measurements (822e Mettler Toledo), and ρ
(the density) was determined from the sample mass and
geometry. Lattice thermal conductivity (κlat) was calculated via
the Wiedemann−Franz law, κ = κtot − LσT, where κtot is the
total thermal conductivity, L is the Lorenz number, T is the
temperature, and σ is the electrical conductivity.

3. RESULTS AND DISCUSSION

FTIR analysis gives valuable information about the presence of
different chemical groups on the surface and was used both to
confirm the degree of oxidation of GO and to monitor the
passage of surface reactions after the modification of the GO
surface. Figure 1 shows the FTIR spectra of (a) pristine GO
and (b) silylated GO over the range of 500−4000 cm−1. For
the pristine GO sample (Figure 1a), characteristic bands are
observed at 822 and 1080−1331 cm−1 (alkoxy C−O stretching
and epoxy C−O−C stretching vibrations), 1723 cm−1 (CO
stretching vibrations of COOH groups), 3450 and 1610 cm−1

(stretching vibrations of hydrogen-bonded-OH group and

Scheme 1. Synthesis Steps for SnSe/GOmod Nanocomposites

Figure 1. FTIR spectra of (a) pristine (untreated) and (b) modified
(silylated) GO (GOmod).
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adsorbed water), and 1604 cm−1 (stretching vibrations of the
sp2-hybridized CC bond in phenolic group).39 By contrast,
the IR spectra of modified GO (Figure 1b) show a reduction in
the intensity of peaks assigned to the epoxy C−O−C
stretching vibration in parallel with the appearance of new
peaks at ca. 1100 and 2978 cm−1. These can be assigned to the
C−N stretching vibration and to the C−H stretching vibration
in alkyl groups, respectively, which may suggest that amine
reacts with the epoxy groups at the GO surface by ring-
opening reaction to generate C−N bonds. Additionally, the
modified GO spectrum shows the disappearance of the
hydroxyl group vibration at approximately 3450 cm−1, an
intensity reduction in the peak due to adsorbed water at 1600−
1610 cm−1 and the appearance of an alkyl band (2978 cm−1).
All these features suggest that silane grafting occurs at the GO
surface.
Raman spectroscopy is one of the most powerful tools to

characterize the structure, bonding, level of disorder, and
composition of carbon-based materials.40 Figure 2 depicts the

Raman spectra of GO, SnSe, SnSe/GO, and SnSe/GOmod. The
Raman spectra of GO (Figure 2a) show two prominent peaks
at ca. 1348 and 1597 cm−1. The G band (1597 cm−1) belongs
to the stretching of the C−C bond in graphitic materials and is
common to all sp2 carbon systems. Meanwhile, the D band
(1348 cm−1) is associated with the disordered structure of GO
or structural defects.41 The Raman spectra of pristine SnSe
(Figure 2b) show a peak at 150−170 cm−1, which originates
from the Ag1 vibration mode characteristic of the orthorhombic
phase of SnSe.42 The relative intensity of the D band is larger
than that of the G band in the SnSe/GOmod (Figure 2d, ID/IG
= 1.07) nanocomposite as compared to GO itself (Figure 2a)
as a consequence of the structural disorder induced by the
modification of the GO. The higher intensity of the D-band
can also be attributed to the alkyl groups which are anchored
to the GO surface as the result of the silylation process (as
manifested by C−H bands in the IR spectra; Figure 1b). Also,
notable in the spectra is the presence of the 2D band at ca.
2700 cm−1 (Figure 2a,d) that signifies the multilayer nature of
the GO material, while the peak at ca. 2940 cm−1 (Figure 2a,d)
can be assigned to the combination mode of G and D bands
(D + G band).43,44 By comparison, considering the main
features of the unmodified nanocomposite (SnSe/Ge; Figure
2d), the intensity of the D band (at 1348 cm−1) is relatively
only slightly higher than that of the G band (at 1597 cm−1)

(ID/IG = 1.03) but nonetheless indicates increased formation
of structural defects compared to GO itself. The A1g vibration
band with a relatively weak intensity at 150−170 cm−1 from
SnSe is observed as might be expected in the spectra of both
nanocomposites (Figure 2c,d).
Figure 3 depicts XRD patterns of the components GO and

SnSe and of the composites SnSe/GO and SnSe/GOmod. The

XRD pattern of GO contains one peak at 10.5°, which can be
assigned to the (001) reflection with a corresponding interlayer
distance of 0.84 nm (Figure 3a). The relatively simple pattern
is characteristic of GO and is consistent with a well-ordered
GO structure that is sustained by the presence of water and
different oxygen-containing functional groups,45 such as those
identified in the IR data presented above. The XRD pattern of
pristine SnSe (Figure 3b) indicates the presence of the
expected peaks corresponding to the most prominent
reflections of the orthorhombic phase of SnSe. The diffraction
pattern of the SnSe nanoparticles could be matched well to
JCPDS-ICCD, card no. 32-1382, and all reflections could be
indexed to the orthorhombic phase of SnSe.46−48 No peaks
indicative of Se, SnO2, SnSe2, or any other impurities were
present, and the SnSe samples were thus single-phase. The
SnSe/GO and SnSe/GOmod nanocomposites (Figure 3c,d and
S1) exhibit similar XRD patterns dominated by the SnSe phase
reflections, with the notable observation that the peaks are
considerably broader than those from the pristine sample of
SnSe. The broadening of these reflections in the patterns of
both nanocomposites likely reflects a reduction in the particle
size compared to SnSe itself and indeed electron microscopy
(HRTEM and SEM) corroborates this assumption and is
discussed in more detail below.
Figure 4 shows SEM images of pristine SnSe and of both

nanocomposites (SnSe/GO and SnSe/GOmod). Treatment of
the SEM image (Figure 4c−e) using the ImageJ software with
the Granulometry Plugin (based on grey level mathematical
morphology operations)49 allows us to calculate the size
distribution of the primary particles and their aggregates for
each of the samples presented. SnSe itself (Figures 4c,f and S2
in the Supporting Information) is seen to be composed of
approximately regular nanospheres with diameters in the range
of 7−35 nm and that assemble into larger loose agglomerates.
The morphology of the pristine ice-templated GO is entirely

Figure 2. Raman spectra of (a) neat GO, (b) neat SnSe, (c) SnSe/
GO nanocomposite, and (d) SnSe/GOmod.

Figure 3. XRD patterns of (a) neat GO; (b) SnSe; (c) SnSe/GO, and
(d) SnSe/GOmod (reflections marked with an asterisk and a dot
correspond to those of SnSe and GO, respectively).
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Figure 4. Low-magnification SEM images of (a) ice-templated SnSe/GO nanocomposite and (b) modified ice-templated SnSe/GOmod
nanocomposite; high-magnification SEM images of (c) as-prepared SnSe, (d) ice-templated SnSe/GO nanocomposite, and (e) modified ice-
templated SnSe/GOmod nanocomposite; (f−h) particle size distributions for SnSe, SnSe/GO, and Sn/GOmod samples, respectively.

Figure 5. (a,d) HRTEM images of as-prepared SnSe nanoparticles and (g) corresponding SAED pattern indicating the polycrystalline nature of the
SnSe nanoparticles; HRTEM images of ice-templated: (b,e) SnSe/GO and (c,f) SnSe/GOmod nanocomposites; SAED patterns of ice-templated:
(h) SnSe/GO and (i) SnSe/GOmod nanocomposites.
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different, and SEM images of the individual beads and their
cross-sections indicate the distinctive porous structure with
typical pore diameters of ca. 2−10 μm (Figure S3). By
comparison, lower magnification SEM images of both
nanocomposites (Figures 4a,b, S4 and S5) indicate a mixing
of sections of GO sheets with the SnSe nanoparticles creating a
more porous microstructure than for SnSe itself (Figure 4c)
but lacking the ordered macroporosity of pristine ice-templated
GO (Figure S3). Looking at higher magnification (Figure
4d,e), the nanosphere-like morphology of SnSe itself is
retained in the synthesized nanocomposites. The nano-
composite samples synthesized using unmodified GO (Figure
4d,g) were shown to form beads with diameters in a range that
are slightly smaller (7−32 nm) than SnSe itself (Figure 4c,f).
By contrast, the nanocomposites prepared using modified GO
(Figure 4e,h) consist mostly of smaller nanoparticles
dominated by those of a mean diameter of ca. 5 nm and to
a lesser extent to particles 20 nm across. One would assume
that the reduced nanoparticle size that predominates in the
modified GO nanocomposites is a direct consequence of the
GO surface modification, where the modifying agent that
anchors to the GO surface likely acts in a similar fashion to a
surfactant. In this case, the grafted silane chains can prevent
the aggregation of nanoparticles by steric repulsion, thus
hindering any further growth of the composite particles. The
decrease in the GOmod particle size could be a promising
development toward reducing the thermal conductivity via
shortening the phonon mean free path and increasing the
phonon scattering at the grain boundaries.50−54 The high
porosity indicated by the SEM images is also potentially
beneficial as a means to increase phonon scattering centers as
exemplified in systems such as Bi2Te3−PbTe where the porous
microstructure exerts a significant positive influence on both
the thermal conductivity and the value of the Seebeck

coefficient; careful control of these structural features can be
exploited to improve the energy conversion efficiency of
devices employing such materials.
TEM images and SAED patterns of neat SnSe and both

nanocomposites are shown in Figure 5. The lattice fringes for
neat SnSe can be clearly seen in HRTEM images (Figure 5d).
Correspondingly, the measured interplanar distances d for
various sets of lattice planes closely match with the expected
planar separations for indexed planes from the orthorhombic
phase of SnSe and SAED patterns could be successfully
indexed on this basis (Figure 5g). For example, lattice spacings
of 2.95 Å (d(111)) and 3.55 Å (d(201)) were typically observed in
HRTEM images (Figure 5d). The diameter of the approx-
imately spherical nanoparticles in the neat SnSe material was
determined to be ca. 20−40 nm, which is in close agreement to
estimates made from SEM images. It is observed from Figure
5b,c,e,f that the nanoparticles in the composites are typically a
factor of 2 or more smaller than those of SnSe, again
corroborating SEM results. It is difficult to discern separate
(modified) GO sheets in the TEM images of the composites,
which suggests a complete mixing of sheet fragments and SnSe.
Both nanocomposites (Figure 5d,f) produce SAED patterns
that are similar to those of as-synthesized SnSe, demonstrating
that highly crystalline selenide particles are preserved within
the nanocomposites; indeed, the measured interplanar
distances are in excellent agreement with the expected d-
spacings for orthorhombic SnSe.47,48 It is also possible to note
that in addition to the sharp diffraction spots associated with
the orthorhombic SnSe phase, there are more diffuse rings
which suggest the presence of (modified) GO, likely coating
the SnSe particles. This is persuasive evidence that the
(modified) GO has a role in preventing the agglomeration/
growth of the SnSe particles (cf. Figure 5a).

Figure 6. (a) Electrical conductivity, (b) the Seebeck coefficient, and (c) the power factor of neat SnSe, ice-templated SnSe/GOmod, and SnSe/GO
nanocomposites.
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Given that previous evidence has suggested that powders of
SnSe lose mass above 600 K, thermal and electrical data were
measured over a range from 290−540 K where the material is
thermally stable.19 As can be seen from Figure 6a, the electrical
conductivity σ of the SnSe/GOmod nanocomposite increases
from 708 S·m−1 at 290 K to 1257 S·m−1 at 539 K. It is
especially notable that the values of the electrical conductivity
obtained for the modified SnSe/GOmod nanocomposite are
greater than those for both the unmodified SnSe/GO
nanocomposite (increasing from 443 S·m−1 at 290 K to 999
S·m−1 at 539 K) and SnSe itself (conductivity increasing from
ca. 55 S·m−1 at 290 K to only 250 S·m−1 at 539 K) over the
same temperature range (Figure 6a), although the unmodified
nanocomposites still compare well with some of the best
previously reported SnSe nanomaterials.55 Therefore, the effect
of the GO component in the composites has some significance.
That the conductivity of the unmodified composite is as high
as observed is perhaps quite surprising given the electrically
insulating nature of GO.56 Less surprising perhaps is the fact
that once many of the oxygen-containing functionalities have
been removed by modification, the conductivity increases. In
the context of electrical conductivity, the modified GO behaves
more like reduced GO, graphene or indeed, “graphitic carbon
nitride, g-C3N4” as a component in the modified composites.25

(Interestingly there is evidence of C−N bonding by FTIR
spectroscopy, as seen in Figure 1).
The contrast in the variation in the Seebeck coefficient S

with temperature for each of the nanocomposites is stark
(Figure 6b). S for SnSe/GO increases with temperature,
showing the n-type behavior at room temperature and
transforming to p-type behavior at 402 K with S ≈ 31 μV·
K−1 at 539 K. By comparison, S for SnSe/GOmod has a negative
signshowing n-type behavioracross the entire measured
temperature range and changes monotonically from −102 μV·
K−1 at room temperature to −136 μV·K−1 at 539 K. Such
behavior indicates that the majority charge carriers are
electrons in both nanocomposites SnSe/GO and SnSe/
GOmod. A comparison with the temperature-dependent
behavior of S for SnSe itself, meanwhile, shows that the
selenide itself exhibits n-type behavior at room temperature
with a value of the coefficient that increases (becomes less
negative) with increasing temperature, approaching a transition
to p-type behavior at 539 K (S ≈ −46 μV·K−1). Given that n-
type semiconductivity has been previously observed in SnSe
nanoparticles prepared from hydrated SnCl2,

55 it would not be
surprising if low levels of Cl− doping contributed to the
negative Seebeck coefficients in both SnSe itself and the
nanocomposites in our measurements. The notable difference
in the magnitude of the coefficient in the modified SnSe/
GOmod materials (and that the value remains negative with
temperature, indeed becoming more negative as T increases),
however, suggests an alternative (additional) source of electron
doping, and this is consistent with the N-doping in the
modified GO component (as indicated by spectroscopic data).
Hence, the treatment with ODTS and TEA both increases the
electrical conductivity and switches the semiconducting
behavior from p-type (as observed in the majority of SnSe
materials and at high T for the GO nanocomposite here) to n-
type.
Taking the above electrical data and Seebeck values of neat

SnSe and both nanocomposites, it was possible to derive values
for the power factor, S2σ, as a function of temperature (Figure
6c). A combination of high electrical conductivity coupled with

substantial (negative) values of the Seebeck coefficient, S,
explains the significant difference in S2σ for neat SnSe and
unmodified composite as compared with modified one. The
most important finding concerning the power factors of the
two different types of nanocomposite and neat SnSe is that S2σ
for SnSe/GOmod is more than an order of magnitude (20-fold)
higher than that for SnSe/GO nanocomposites and neat SnSe,
at 539 K. The difference in power factor accomplished by the
modification of the GO component is especially striking given
that only 10 wt % of (modified) GO is used in the
nanocomposites, and the effect is very similar to that
engendered by doping SnSe with either iodine (S2σ of
≈0.016 mW m−1 K−2 at 565 K)6 or chlorine (S2σ of ≈0.068
mW m−1 K−2 at 530 K).55 It remains to be seen in future work
as to what constitutes an optimum level of modified GO
component for a high-performance SnSe/GOmod nanocompo-
site (or indeed whether alternative forms of functionalizing the
GO can improve the transport properties still further).
However, ultimately, it should prove beneficial to be able to
replace at least some of the relatively expensive and
environmentally detrimental raw materials (namely, tin,
selenium, and halide additives where applicable) with
ubiquitous carbon, nitrogen, and silicon. Coupled with the
energy-efficient, aqueous solution synthesis approach used to
prepare the SnSe component, there are thus several ways in
which the introduction of SnSe-based materials could be made
more sustainable.
Another obviously important criterion in assessing the

effectiveness of a modified-GO composite approach to SnSe
material development is an evaluation of the thermal transport
behavior. At the present time, we have conducted preliminary
thermal diffusivity measurements on hot pressed samples,
given the challenges in accounting for the porosity of such
materials and in representing their true experimental densities.
By approximating the composite density as the sum of the
components and making corrections for porosity,57 we
calculated the thermal conductivity (Figure S6) of the
nanocomposites. It is perhaps not surprising that the total
thermal conductivity of the unmodified SnSe/GO composite is
lower than that of the modified material (by a factor of
approximately 2; tentatively ca. 0.4 W m−1 K−1 vs 0.7 W m−1

K−1 at 550 K) given the likely more electrically and thermally
insulating nature of GO compared to the SnSe/GOmod
nanocomposite. Both nanocomposites exhibit values of κtotal
of the same order as “pristine” solution-synthesized SnSe
nanoparticles.58 With further attenuation of the porosity and
manipulation of GO functionalization/doping in association
with advanced processing techniques such as spark plasma
sintering, it should be possible to engineer nanocomposites
with finely tuned electrical and thermal properties.

4. CONCLUSIONS
This work demonstrates that it is possible to prepare ice-
templated tin selenide-GO nanocomposites via a simple
aqueous solution process. Moreover, it is possible to
functionalize the GO component by way of modifying its
surface using alkylamines. This allows the facile creation of
both unmodified (SnSe/GO) and modified (SnSe/GOmod)
composite materials for the first time. The chemical
modification of the GO surface with TEA and ODTS produces
significant changes to the electrical properties of the ensuing
SnSe GO-based composites. Markedly, the surface-modified
nanocomposite, SnSe/GOmod, exhibited higher electrical
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conductivity and an increased negative Seebeck coefficient.
The superior electrical conductivity and Seebeck coefficient
give rise to S2σ values that exceed those of typical as-prepared
powders of SnSe. Further, the power factor for the modified
SnSe/GOmod composite is 20 times that of the equivalent
unmodified nanocomposite, SnSe/GO. Overall, these results
suggest that freeze-cast GO nanocomposites formed with
“active” thermoelectric components can provide a very
effective means of influencing the electrical properties.
Preliminary data suggest that thermal properties may be
similarly tunable. The GO component in these nano-
composites affords a further layer of property and performance
control via porosity and functionalization/modification of the
surface. The approach should be adaptable to other material
systems offering a new strategy for designing relatively
inexpensive, lightweight, and low-toxicity thermoelectric
materials and devices.
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